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Mass transport in viscous flow under a progressive
water wave
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(Received 19 June 1996 and in revised form 10 December 1996)

We consider two-dimensional free surface flow caused by a pressure wavemaker in a
viscous incompressible fluid of finite depth and infinite horizontal extent. The
governing equations are expressed in dimensionless form, and attention is restricted to
the case δ' ε' 1, where δ is the characteristic dimensionless thickness of a Stokes
boundary layer and ε is the Strouhal number. Our aim is to provide a global picture
of the flow, with emphasis on the steady streaming velocity.

The asymptotic flow structure near the wavenumber is found to consist of five
distinct vertical regions: bottom and surface Stokes layers of dimensionless thickness
O(δ), bottom and surface Stuart layers of dimensionless thickness O(δ}ε) lying outside
the Stokes layers, and an irrotational outer region of dimensionless thickness O(1).
Equations describing the flow in all regions are derived, and the lowest-order steady
streaming velocity in the near-field outer region is computed analytically.

It is shown that the flow far from the wavemaker is affected by thickening of the
Stuart layers on the horizontal length scale O[(ε}δ)#], by viscous wave decay on the
scale O(1}δ), and by nonlinear interactions on the scale O(1}ε#). The analysis of the
flow in this region is simplified by imposing the restriction δ¯O(ε#), so that all three
processes take place on the same scale. The far-field flow structure is found to consist
of a viscous outer core bounded by Stokes layers at the bottom boundary and water
surface. An evolution equation governing the wave amplitude is derived and solved
analytically. This solution and near-field matching conditions are employed to
calculate the steady flow in the core numerically, and the results are compared with
other theories and with observations.

1. Introduction

Steady streaming motions in predominantly oscillatory flows are generated by
Reynolds stress forces acting in boundary layers and other regions of the fluid where
viscous effects are significant (Lighthill 1978). Although this phenomenon has been
understood in general terms since Lord Rayleigh’s work in nonlinear acoustics
(Rayleigh 1945, pp. 333–342), the role played by streaming motions in the theory of
water waves and in other wave propagation problems is sufficiently important to justify
further study of the subject.

In the present paper we consider viscous free surface flow caused by an oscillating
surface pressure in an incompressible fluid of finite depth and infinite horizontal extent.
We define this oscillating surface pressure as a pressure wavemaker. The studies on
which we base our work are the computation by Longuet-Higgins (1953) of the
matching conditions at the outer edges of the Stokes boundary layers at the bottom
boundary and the water surface, Stuart’s (1966) analysis of the mean flow transition
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layers adjacent to the Stokes layers, Davey & Stewartson’s (1974) derivation of the
nonlinear Schro$ dinger equation governing the amplitude of a monochromatic water
wave, Van Dyke’s (1970) treatment of viscous entry flow in a channel, and the
derivations by Dore (1976) and Leibovich (1980) of the equations governing steady
streaming outside the Stokes layers. Our aim is to fit these results together to provide
a global picture of the flow, with emphasis on the steady streaming velocity. In
particular, we will show that the inviscid solution of Stokes (1847) provides a fair
approximation to the mean horizontal velocity profile close to the wavemaker, while
the flow far from the wavemaker is described with good accuracy by the viscous theory
of Longuet-Higgins, as amended by Craik (1982).

Our work differs from recent numerical computations of streaming motions
associated with water waves (Iskandarani & Liu 1991a, b, 1993; Wen & Liu 1994),
since the waves treated in these studies are periodic in the propagation direction, and
decay temporally but not spatially. In more closely related papers, Dore (1977) obtains
an ad hoc similarity solution for the mean flow valid only for fluids of infinite depth,
and Liu & Davis (1977), Grimshaw (1981), and Craik (1982) treat flows for which a
typical wave amplitude is small compared to the thickness of a Stokes layer. In the
present study we extend these theories by obtaining a solution for finite-depth fluids
and for wave amplitudes significantly larger than those considered by Liu & Davis,
Grimshaw, and Craik.

In figure 1 we show the experimental set-up and the asymptotic flow structure. To
explain our reasons for proposing this structure, we define the reciprocals of a
characteristic wavenumber and frequency as length and time scales, r

"
and r

$
as

dimensionless coordinates measuring distance along and perpendicular to the mean
surface level, δ as the dimensionless thickness of the Stokes layers, and ε as the Strouhal
number, the ratio of the advective terms in the momentum equations to the time-
derivative terms. We consider flows driven by an imposed normal stress at the water
surface, where the imposed stress is sinusoidal in time and vanishes as rr

"
rU¢, and we

neglect transients by taking the dependent variables to be temporally periodic. In
addition, we restrict our attention to the case d¯O(1) and δ' ε' 1, where d is the
dimensionless ambient fluid depth. When expressed in this notation, the solutions given
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by Liu & Davis, Grimshaw, and Craik hold only for ε' δ. In terminology employed
by Longuet-Higgins, their analysis applies only to the conduction case while ours
applies more generally and contains both the conduction and convection solutions as
special cases.

In essence, Rayleigh’s method of solution consists of expanding the dependent
variables in powers of ε to obtain a sequence of linear problems. If the present flow is
treated in this way, we find that the O(1) solution is sinusoidal in time and that the O(ε)
solution is the sum of a steady flow and a double harmonic. Up to and including O(ε)
terms, the transient part of the solution consists of an inviscid irrotational core flow
bounded by Stokes layers at the boundaries.

The O(ε) mean flow is inviscid and presumably irrotational because of the nature of
the forcing, but must satisfy viscous boundary conditions if required to match the O(ε)
Stokes layer solutions derived by Longuet-Higgins. This implies that the mean vorticity
decays to zero with distance from the boundaries in Stuart layers lying outside the
Stokes layers, which in turn implies that the outer flow cannot be irrotational
everywhere because the Stuart layers thicken with distance from the wavemaker, and
ultimately include the entire water column. Hence, in our view the horizontal
asymptotic structure consists of two distinct regions: a near field close to the
wavemaker in which the outer flow is inviscid and irrotational, and a far field in which
viscous effects play a major role throughout the fluid. In addition, each of the
horizontal regions divides into a bottom boundary layer, an outer core flow, and a
surface boundary layer.

The flow structure can be described quantitatively by defining L
H

and L
V

as
horizontal and vertical Stuart layer length scales, and by noting that solution of the
linear inviscid wavemaker problem shows that the O(ε) mean flow is the sum of a term
independent of r

"
and of an infinite series S of terms that decay exponentially in rr

"
r with

O(1) decay constants. The presence of the series S imposes the length scale L
H

¯ 1, and
balancing advective and viscous terms in the temporally averaged equations yields
L

V
¯ δ}ε, where, to repeat, δ is the Stokes layer thickness and ε is the Strouhal number.

Consequently, we find that the near-field flow structure consists of Stokes layers at the
bottom boundary and water surface of characteristic length scale δ, adjacent Stuart
layers, which apply only to the mean flow field and have dimensionless thickness δ}ε,
and an inviscid and irrotational core. Here the near field is defined as the region
rr
"
r¯O(1) in which the series S is O(1) in magnitude.
Because this series decays with distance from the wavemaker, the near-field mean

velocity just outside the Stokes layers becomes independent of r
"

as rr
"
rU¢, and

provides no information about the scale L
H
. This comes instead from the Stuart layer

equations, derived here in Appendix A, which suggest that the Stuart layers thicken
with distance from the wavemaker in the same way as a Blasius boundary layer, and
thus have a local scale L

V
¯ (δ}ε) rr

"
r"/#. Therefore, since the Stuart layers fill the fluid

when L
V

¯ 1, the far field is the region rr
"
r¯ (ε}δ)#, and the far-field flow structure

consists of Stokes layers at the boundaries and a viscous mean flow in the core. Figure
1 is based on the above reasoning, and closely resembles figure 1 in Van Dyke’s study
of channel entry flow.

In addition to the scale (ε}δ)#, two other large horizontal length scales are significant.
There are 1}ε#, the wave interaction length scale implied by Davey & Stewartson’s
(1974) derivation of the nonlinear Schro$ dinger equation for monochromatic water
waves, and 1}δ, the horizontal scale on which temporally sinusoidal water waves decay
in a viscous fluid of finite depth. We find, then, that three large length scales play a role
in the analysis, namely (ε}δ)#, the length required for the Stuart layers to fill the fluid,
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and the lengths 1}ε# and 1}δ, which govern the variation of the wave field with distance
from the wavemaker.

To simplify our analysis of the far-field flow, we consider a parameter setting such
that wave decay, nonlinear interactions, and thickening of the Stuart layers all take
place on the same scale. This occurs if

δ¯λε#, (1.1)

where λ is an O(1) constant. For this case the near and far fields are the regions
rr
"
r¯O(1) and rr

"
r¯O(1}ε#), respectively, and wave decay and nonlinear interactions

both take place on the scale 1}ε#.
In addition to its mathematical convenience, the parameter setting λ¯O(1) holds in

many experimental situations. For example, typical values of the constants in a
laboratory study of progressive waves are a kinematic viscosity of 0.01 cm# s−", a wave
period of 1 s, a depth of 50 cm, and a wave amplitude of 1.5 cm. Using (2.1) below, this
gives dC 2, δC 0.002, εC 0.06, and so λC 0.6, an O(1) constant.

In the remainder of the paper we derive and solve the equations governing the
lowest-order transient and mean flows in the near-field outer region for the case
d¯O(1) and δ' ε' 1. To treat the far-field outer region we impose the additional
restriction (1.1), with λ¯O(1). We then derive evolution equations for the temporally
averaged velocity and the complex amplitude of the wave field, solve the latter equation
analytically to determine the wave amplitude as a functional of the mean horizontal
velocity, and use this result and near-field matching conditions to compute the lowest-
order approximation for the mean flow numerically. The results are summarized and
discussed in our concluding section.

2. Dimensionless equations of motion

Let r¯ (r
"
, r

#
, r

$
) denote the position vector in Cartesian coordinates, with r

$
pointing in the vertical direction, and let t denote time. We consider two-dimensional
flow in the (r

"
, r

$
)-plane between the water surface r

$
¯ ζ(r

"
, t) and the solid bottom

r
$
¯®D* in a channel of infinite horizontal extent, with viscous effects included and

surface tension omitted. Characteristic values of the wavenumber, the wave frequency,
and the particle velocity are denoted here by κ*, σ* and V*, respectively, where κ* and
σ* are related through the deep-water dispersion relation. We scale lengths by 1}κ*,
time by 1}σ*, the velocity u by V*, the surface elevation ζ by V*}σ*, and the kinematic
surface traction f and excess pressure p by (V*σ*)}κ*. Three parameters arise after
scaling: δ, a measure of viscous effects, the Strouhal number ε, a measure of
nonlinearity, and the dimensionless depth d. Their definitions are

δ¯ (2νκ*#}σ*)"/#, ε¯V*κ*}σ*, d¯ κ*D*, (2.1)

respectively, where ν is the kinematic viscosity. We restrict our attention to the case
d¯O(1) and δ' ε' 1.

When expressed in dimensionless form, the Navier–Stokes equations become

¥u
k

¥r
k

¯ 0, (2.2)

Du
i

Dt


¥p
¥r

i

¯
1

2
δ#

¥E
ki

¥r
k

, (2.3)
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where u
i
are the Cartesian velocity components and

D

Dt
¯

¥
¥t

εu
k

¥
¥r

k

, E
ik

¯E
ki

¯
¥u

i

¥r
k


¥u

k

¥r
i

. (2.4)

The dimensionless boundary conditions are

u
i
¯ 0 at r

$
¯®d, (2.5a)

(®pζ ) n
i
"

#
δ# n

k
E

ki
¯ f

i
,

D

Dt
(r

$
®εζ )¯ 0 at r

$
¯ εζ, (2.5b)

in which n
i
and f

i
are the unit outward-pointing normal to the water surface and the

surface traction, respectively.
Our aim is to compute the flow forced by a pressure wavemaker, which we model by

letting
f
i
¯ n

i
F¯ n

i
²a(r

"
) exp (®iσt)c.c.´, (2.6)

where c.c. is the complex conjugate, a is an even function of r
"
satisfying a(³¢)¯ 0,

and σ is the dimensionless frequency of the wavemaker. In the calculation we omit
treatment of transients by taking the dependent variables to be periodic functions of
σt. Also, since the r

"
-component of the horizontal velocity is odd in r

"
and the other

dependent variables are even, we consider only the region r
"
& 0 in the analysis

presented below.
Equations (2.2)–(2.5a) will be used to treat the bottom boundary layer, and the

coordinates (x, z) and velocity components (u,w) defined by

r
"
¯x, r

$
¯ zε

zd

d
ζ, u¯ u

"
, w¯ u

$
, (2.7)

to treat the flow in the outer region. This flow will be analysed using Joseph’s method
of domain perturbations, and therefore, as explained by Joseph (1973) and Leibovitz
(1982), it is unnecessary to express the governing equations in terms of the (x, z)-
coordinates.

To treat the surface layer, we employ a moving orthogonal curvilinear coordinate
system (s, n), where s and n are parallel and perpendicular to the water surface,
respectively. The components of the particle velocity and the surface traction are
denoted in this system by (u

s
, u

n
) and ( f

s
, f

n
)¯ (0,F ), and the equation of the surface

is n¯ 0.
With the exception of the fluid acceleration, all terms in the Navier–Stokes equations

can be expressed in the (s, n)-coordinates through use of standard formulae. To
determine the acceleration, we define T¯ t and we let ¥}¥t denote the partial derivative
with respect to time with (r

"
, r

$
) held fixed and ¥}¥T the derivative with (s, n) held fixed.

Defining the (s, n)-coordinates by r¯R(s, n,T ), with R a prescribed function of its
arguments, and letting c¯ ¥R}¥T, these derivatives are related by

¥
¥t

¯
¥
¥T

®c[¡. (2.8)

From (2.8) it follows that the material derivative operator takes the form

D

Dt
¯

¥
¥T

(u®c)[¡. (2.9)
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Therefore, since ¥sW }¥T¯®ΓnW and ¥nW }¥T¯ΓsW , where Γ is the angular speed of the
(s, n)-coordinate axes, the acceleration takes the form

Du

Dt
¯ sW 0¥us

¥T
Γu

n1nW 0¥un

¥T
®Γu

s1(u®c)[¡u. (2.10)

In the present problem we define s and n by

r
"
¯ s

εn

M

¥ζ
¥s

, r
$
¯ εζ

n

M
, (2.11)

where ζ is expressed as a function of s and T, and where

M¯ [1ε#(¥ζ}¥s)#]"/#. (2.12)

In this system the scaled equations of motion take the form
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with boundary conditions

u
n
¯ c

n
, E

ns
¯ 0, p¯ ζ®F®"

#
δ#E

nn
, (2.16)

at n¯ 0. Here we have made the definitions

E
ss

¯
2

h 0
¥u

s

¥s
εMKu

n1 , E
nn

¯ 2
¥u
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¥n
, (2.17a)
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1
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¥#ζ
¥s#

, h¯M(1εKn), (2.18)

c
s
¯Γn

ε

M

¥ζ
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¥ζ
¥s

, c
n
¯

1

M

¥ζ
¥T

, (2.19)

where c
s

ad c
n

are dimensionless components of the speed c in (2.8), and Γ is the
dimensionless version of the angular speed in (2.10).

3. Near-field outer solution

Since the flow in this region is irrotational, it can be computed if the normal
components of velocity at the outer edges of the surface and bottom boundary layers
are known. These layers are analysed in Appendix A, where it is shown that the flows
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due to displacement thickness associated with the surface and bottom layers are
O(δ#}ε) and O(δ), respectively. Therefore, because of the parameter restriction δ' ε,
boundary layer pumping can be ignored if we are interested only in computing the O(ε)
solution for the steady streaming velocity in the outer region.

To describe the motion we employ the coordinates (2.7). Then, using Joseph’s
method, we expand the pressure p and the Cartesian velocity components (u,w) in the
form

f¯ f (!)ε 9 f (")
zd

d
ζ (!)

¥ f (!)

¥z *… , (3.1)

where z¯®d corresponds to r
$
®d, the bottom boundary, and z¯ 0 to r

$
¯ ζ, the free

surface. As explained in Joseph (1973) and Leibovitz (1982), the partial differential
equations satisfied by the terms f (m)(x, z, t) are the same as if (x, z) are Cartesian
coordinates.

The most convenient solution method is to express the velocity and pressure in terms
of velocity potentials φ(m) through

u(!)¯
¥φ(!)

¥x
, w(!)¯

¥φ(!)

¥z
, p(!)¯®

¥φ(!)

¥t
, (3.2)

u(")¯
¥φ(")

¥x
, w(")¯

¥φ(")

¥
, p(")¯®

¥φ(")

¥t
®"

#
u(!)[u(!), (3.3)

where φ(!) and φ(") solve Laplace’s equation subject to

¥φ (!)

¥z
¯

¥φ(")

¥z
¯ 0 (3.4)

at z¯®d, and

¥φ(!)

¥z
¯

¥ζ (!)

¥t
,

¥φ(")

¥z
¯

¥ζ (")

¥t


¥
¥x 0

¥φ(!)

¥x
ζ (!)1 , (3.5)

p(!)¯ ζ (!)®F, p(")¯ ζ (")ζ (!)
¥#ζ (!)

¥t#
, (3.6)

at z¯ 0. Here F takes the form

F¯ a(x) exp (®iσt)c.c., (3.7)
where a is even in x.

We ignore transients by taking the dependent variables to be periodic functions of
σt. Then φ(!) and ζ (!) are given by

φ(!)¯φ[!](x, z) exp (®iσt)c.c., ζ (!)¯ ζ [!](x) exp (®iσt)c.c., (3.8)

where φ [!] solves Laplace’s equation subject to the boundary conditions

¥φ[!]

¥z
®σ#φ[!]¯®iσa at z¯ 0,

¥φ[!]

¥z
¯ 0 at z¯®d, (3.9)

and to outgoing wave conditions at rxr¯¢. After φ[!] has been computed, ζ [!] can be
determined using the first equation in (3.5).

In calculating the outer first-order mean flow, we let angle brackets denote the time
average, and we define Φ by

Φ¯©φ (")ª, (3.10)
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where Φ satisfies Laplace’s equation subject to ¥Φ}¥z¯ 0 at z¯®d and

¥Φ
¥z

¯
¥
¥x-

¥φ(!)

¥x
ζ (!). (3.11)

at z¯ 0. From these equations, it can be shown that the horizontal Stokes drift velocity

us¯-& u(!)dt
¥u(!)

¥x
&w(!)dt

¥u(!)

¥z . (3.12)

and the mean current ©u(")ª satisfy
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usdz¯©u(!) ζ (!)ª
z=!
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©u(")ªdz¯®©u(!) ζ (!)ª
z=!

, (3.13)

and therefore the vertical integral of the mass transport velocity

um¯©u(")ªus (3.14)

vanishes, as required for overall conservation of mass.
To solve the above equations, we define the Fourier transform of the function a in

(3.7) by

aW ¯
1

2π&
¢

−¢

a(x) e−ikxdx, (3.15)

and find that the O(1) outer solution takes the form

ζ [!]¯&
¢

−¢

k tanh (kd ) aW
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σ#®k tanh (kd )

cosh [k(zd )]

cosh (kd )
eikxdk. (3.17)

For all a(x) such that aW is analytic on the real transform axis, the wave field and mean
velocity satisfy

ζ (!)Uχ exp ²i(κx®σt´c.c.evanescent terms, (3.18a)

©u(")ªU®
2κ

σd
rχ r#evanescent terms, (3.18b)

©w(")ªU 0evanescent terms, (3.18c)

where the evanescent terms decay exponentially with rxr, where κ is the positive solution
of

k tanh (kd )¯σ#, (3.19)

and where χ¯ 2πi
κaW (κ)

12κd cosech (κd )
. (3.20)

Here ©u(")ª is negative, since it must balance the mass flux in the positive x-direction
associated with the Stokes drift. Equations (3.18a, b) serve as matching conditions for
the far-field equations discussed in §4.
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Plots of the near-field mean horizontal velocity are given in figure 2 for the case
a¯ 2h sech (x), σ¯ 1, and d¯ 1, with h chosen such that rχ r¯ "

#
. For this flow

the solution for u(") has essentially reached the asymptotic limit given by (3.18) at
x¯ 6.6286.

4. Far-field outer solution

As stated previously, in treating the flow far from the wavemaker we invoke the
parameter restriction (1.1), so that wave decay, nonlinear interactions, and thickening
of the Stuart layers all take place on a horizontal length scale O(1}ε#). With this in
mind, we let κ denote the solution of (3.19) and we introduce the fast and slow variables

θ¯ κx®σt, X¯ ε#x, (4.1)

where (x, z) are defined in (2.7). In terms of these variables, the governing equations in
the outer region are given with O(ε') errors by

κ
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where the total pressure P and the vorticity Ω are defined by
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. (4.5)

Expressing the lowest-order solution for the wave field as

ζ (!)¯ ζ
!"

(X )Ec.c., (4.6)
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where E¯ exp (iθ), and referring to the boundary layer analysis in Appendix A, we find
that

¥©uª
¥z

¯ ε
8κ$ rζ

!"
r#

σ
O(ε#), (4.7)

at z¯ 0, where angle brackets again denote time averaging. Also, since δ¯O(ε#) and
since viscous forces in the surface Stokes layer affect the outer flow at O(δ#), as shown
in Appendix A, the upper boundary conditions on the vertical velocity and pressure are
the purely inviscid conditions

w¯®σ
¥ζ
¥θ

εκ
¥
¥θ

(uζ )ε#
κ

2

¥
¥θ 0ζ #

¥u
¥z1ε$(κ6

¥
¥θ 0ζ $

¥#u
¥z#1

¥
¥X

(uζ )*O(ε%), (4.8)

p¯ ζ®εζ
¥p
¥z

®ε#
1

2
ζ #

¥#p
¥z#

®ε$
1

6
ζ $

¥$p
¥z$

O(ε%), (4.9)

at z¯ 0. The corresponding bottom boundary conditions are
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at z¯®d, where
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We now follow the procedure used by Davey & Stewartson (1974), and expand the
dependent variables in the form

u¯ u
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Eua
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E{ ε(u
"!

u
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Eua
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E #ua
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E{ #)… , (4.13)

where an overbar denotes the complex conjugate. Our aim is to obtain equations
governing the O(1) surface elevation and the lowest-order non-vanishing approxi-
mation for the mean velocity components. In contrast to inviscid theories, which
invariably yield indeterminate mean streaming velocities, our analysis involves no
ambiguities.

The derivation of the surface elevation equation is lengthy, but presents no
conceptual difficulties. The resulting evolution equation is
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¥X
iα rζ

!"
r# ζ
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[βi(γ®β)] ζ

!"
¯ 0, ζ
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¯χ at X¯ 0, (4.14)

where χ is the wave amplitude in (3.20) and where
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in which µ¯ tanh (κd ), C
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¥κ

[κ tanh (κd )]"/#. (4.18)
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Here the parameter α measures the nonlinearity of the waves, β is generated by the
boundary layer pumping, and γ results from the Doppler effect produced by the mean
horizontal velocity. In an inviscid theory, β would be zero and γ would be an arbitrary
constant (see Mei 1989, section 12.3).

In the course of deriving (4.14), we found that w
"!

¯w
#!

¯ 0. Proceeding to higher
order, another lengthy calculation shows that the equations for the mean flow take the
form
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and where u
"!

and w
$!

are the lowest-order non-vanishing approximations for the mean
velocity components. The boundary conditions on the mean flow are
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These equations differ slightly from the mean flow equations derived by Leibovich
(1980) because in our far field the horizontal derivatives of the mean velocity are much
smaller than vertical derivatives. Another difference is that in our theory the equations
governing the wave amplitude and mean flow are coupled, since the solution of (4.14)
depends on γ and hence on u

"!
, while the mean flow depends on A, the modulus of the

wave amplitude ζ
!"

.
To compute ζ

!"
, we note that ¥A#}¥X¯®2βA#, so that

A¯ rχ r exp (®βX ), (4.27)

and from this result we find that

ζ
!"

¯χ exp [®R(X )], R¯βXi 9 α

2β
(rχ r#®A#)&X

!

γ(X « ) dX «: . (4.28)

Therefore, since γ is the only term in (4.28) depending on u
"!

, the mean flow affects only
the phase of the wave amplitude, not its modulus.

The problem of computing the mean flow reduces now to solving (4.19)–(4.26), with
A given by (4.27). When rX r is large, the nonlinear terms and the terms involving us and
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ws in (4.19)–(4.21) are small due to viscous decay, and can be omitted. The mean
horizontal velocity is then parabolic in z, and corresponds to the conduction solution
of Longuet-Higgins, as corrected for viscous wave decay by Craik. Apart from this
case, the mean flow must be computed numerically.

To simplify the numerical algorithm, we express the problem in terms of a stream
function Ψ(X, z) defined so that u

"!
¯ ¥Ψ}¥z and w

$!
¯®¥Ψ}¥X. Letting subscripts

denote partial differentiation, the governing equation for Ψ is
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with boundary conditions
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at the top surface,
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at the bottom, and

Ψ(0, z)¯®S(0, 0)
zd

d
(4.32)

at X¯ 0.
The most straightforward method for solving (4.29)–(4.32) consists of marching

forward in X using an implicit finite difference scheme for discretizing X-derivatives,
and solving a nonlinear boundary value problem in z for each X. For small enough
wave amplitudes we were able to solve the mean flow equations in this way and to
verify that the mean horizontal velocity approaches a parabolic profile in z as XU¢.
For larger amplitudes the iteration required to solve the boundary value problem in z
refuses to converge, probably because the flow direction is opposite to the marching
direction over a portion of the water column. Similar stability problems are discussed
by Rubin & Tannehill (1992).

To compute the solution in the case of large-amplitude waves, we treated
(4.29)–(4.32) through use of pseudospectral collocation in both X and z, with the grid
point values of Ψ taken as the unknowns. Discretization of the z-derivatives was
carried out by using a linear transformation to map the physical domain z ` [®d, 0] into
the computational domain z

L
` [®1, 1] and by collocating on Chebyshev–Gauss–

Lobotto points in z
L
. Similarly, X-derivatives were treated by mapping X ` [0, ¢) into

x
R

` [®1, 1] through use of the transformation

x
R

¯
X®L

XL
, (4.33)

where L is a positive constant, and by collocating on Chebyshev–Gauss–Radau points
in x

R
. As noted by Boyd (1989, p. 447), the boundary conditions at X¯¢ are ‘natural ’

in the sense that they need not be explicitly imposed.
Differentiation matrices in the z

L
-domain can be found in standard references

(Canuto et al. 1988; Boyd 1989), and the matrix representing first derivatives with
respect to x

R
is given in our Appendix B. Differentiation matrices in the (X, z)-

coordinates were computed using the chain rule, and were chosen to incorporate the
boundary conditions.

The first step in the method used here for solving the spatially discretized equations
consisted of multiplying all nonlinear terms by a parameter τ, so that τ¯ 0 corresponds
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F 3. Vertical profiles of the far-field mean horizontal velocity. σ¯ 1, d¯ 1, λ¯ 1. ——, X¯ 0;
[[[[[[, X¯ 0.003833; ––––, X¯ 0.008905; -[-[-[, X¯ 0.04292; —[[[—[[[—[[[, X¯ 0.1713.

to the linearized problem and τ¯ 1 to the nonlinear problem. The resulting equations
take the form

MΨN(Ψ, τ)¯ c, (4.34)

where Ψ is a column vector whose entries are the values of Ψ at the grid points, c is
a known column vector, M is a matrix with elements independent of Ψ, and N(Ψ, τ)
is a nonlinear function of its arguments satisfying N(Ψ, 0)¯ 0. Differentiating (4.34)
with respect to τ yields an ordinary differential equation of Ψ with initial condition
Ψ(0) obtained by solving (4.34) for τ¯ 0. The solution Ψ(τ) was then advanced in τ
through use of a second-order Runge–Kutta scheme as a predictor step and solution
of (4.34) by Newton iteration as a corrector step.

In the numerical simulations we used a 33¬33 grid and varied the mapping
parameter L in (4.33) depending on the wavelength. The accuracy of the scheme was
controlled by imposing tolerances on the solution increment in the Newton iteration
and on the residual of the nonlinear equation for each τ. These tolerances were set at
10−) and 10−', respectively. In contrast to our experience in using the marching
method, no difficulties were encountered in computing Ψ(1), the solution of the
original system of nonlinear equations.

As typical examples of mean horizontal velocity profiles, we give in figure 3 the
solution for the case A(X¯ 0)¯ 0±5, σ¯ 1, d¯ 1, and λ¯ 1 for different values of X.
As can be seen, the solution changes from a depth-independent profile to a parabolic
profile as X increases. In figure 4 we show the difference between our results for this
case and Craik’s theory, the solution to ¥%Ψ}¥z%¯ 0 with boundary conditions (4.30)
and (4.31). As anticipated, the linear and nonlinear solutions are indistinguishable far
enough downstream. Because the only difference between Craik’s solution and
Longuet-Higgins’ theory consists of the inclusion of viscous wave decay in Craik’s
work, the shape of our velocity profile far from the wavemaker solution also agrees
with the conduction solution of Longuet-Higgins.

Since the evolution to the conduction solution is relatively rapid in this case, our
theory validates Craik’s approximation. However, for larger depths or smaller
wavelengths, the evolution to the conduction solution is less rapid. For example, for
one of the experiments of Mei, Liu & Carter (1972) discussed below, σ¯ 1, d¯ 2.01,
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F 4. Vertical profiles of the far-field mean horizontal velocity minus Craik’s (1982) solution.
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F 5. Vertical profiles of the far-field mean horizontal velocity. σ¯ 1.00, κ¯ 1, d¯ 2.01,
λ¯ 0.242, ε¯ 0.155. ——, X¯ 0; [[[[[[[, X¯ 7.578; – – – –, X¯ 16.38; -[-[-[, X¯ 27.42;
—[[[—[[[—[[[, X¯ 54.26.

κ¯ 1, and λ¯ 0.242. In figures 5 and 6 we show the corresponding plots for this case.
Because the dimensionless depth is larger and λ is smaller than for the flow discussed
in the previous paragraph, the right-hand side of (4.29) is smaller in the present case.
Therefore, in this example ¥%Ψ}¥z%¯ 0 is a poor approximation to equation (4.29)
except very far from the wavemaker, and Craik’s solution only holds in this region.

5. Comparison of far-field flow with observations

Probably the most extensive set of laboratory observations of mass transport in
water waves are those carried out by Mei, Liu, and Carter (1972, hereafter referred to
as MLC). Most of their measurements were taken several wavelengths from the
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F 7. Mass transport velocity profiles. k¯ 1, d¯ 1.02, σ¯ 0.886, λ¯ 0.496, ε¯ 0.0863. Station
2, X¯ 0.205. ——, Present theory; [[[[[[, Craik solution; – – – –, Stokes solution; experimental data
points from MLC: , time¯ 1 h; *, time¯ 1 h; V, time¯ 2 h; ^, time¯ 2 h.

wavemaker. Our theory predicts that at these distances the characteristics of the
wavemaker do not affect the flow, so that MLC’s use of a paddle wavemaker presents
no problems in comparing our theory with their observations.

In his paper, Craik lists a number of problems in making such comparisons, in
particular effects due to large wave amplitudes and to evolution of the mean velocity
profile with distance from the wavemaker. Our theory alleviates the first problem by
including finite-amplitude effects, and the second by including the variation of the
mean profile with horizontal distance. However, we have not considered other factors
discussed by Craik, namely effects due to surface contamination, channel sidewalls,
temporal evolution, and the influence of air flow on the motion.

MLC measured mass transport velocities at various positions in the water column.
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F 8. Mass transport velocity profiles. k¯ 1, d¯ 2.01, σ¯ 1.00, λ¯ 0.242, ε¯ 0.155. Station
2, X¯ 1.29. ——, present theory; [[[[[[, Craik solution; – – – –, Stokes solution; experimental data
points from MLC: *, time¯ 18 h.

Most of their data were taken from Station 2, located 3.5 m downstream from the
wavemaker. However, for some of the shorter waves they also provide data at other
stations. In our calculation, we need the amplitude of the wave at X¯ 0. For each of
our simulations, the scaling wavenumber and amplitude were taken from the station
closest to the wavemaker, and equation (4.27) was used to obtain the amplitude at
X¯ 0. This difference in amplitude was very small for most cases, consistent with the
remarks in MLC.

Figures 7 and 8 show a comparison of the MLC measurements of the mass transport
velocity with the present computation, the irrotational theory of Stokes, and the linear
theory of Craik. Figure 7 depicts a case at a station for which the flow is effectively
linear, and for which the differences between our solution and Craik’s are negligible.
In figure 8, we show a flow which has a larger effective depth; neither at this station
nor at the others does the profile resemble the conduction solution, and this is typical
of these cases. Thus, the advantage of our theory is clear : it contains the conduction
solution as a special case but it also retains nonlinear terms which are significant except
very far from the wavemaker.

6. Discussion

Our results suggest that the flow near the wavemaker consists of an irrotational core
bounded by double boundary layer structures at the top and bottom boundaries. Each
structure is made up of Stokes layers in which the time-dependent part of the vorticity
decays to zero with distance from the boundary on an O(δ) dimensionless length scale,
and Stuart layers in which the steady part of the vorticity decays on an O(δ}ε)
dimensionless scale. In this near-field region the mean flow outside the boundary layers
closely resembles Stokes’ irrotational solution.

The Stuart layers thicken with distance from the wavemaker, much like the Blasius
boundary layers near the entrance to a channel, and eventually fill the fluid column. In
this far-field region, the mean flow is essentially the same as predicted by Longuet-
Higgins’ viscous conduction solution. Thus, our resolution of the disagreement
between the theories of Stokes and Longuet-Higgins is that both solutions are correct,
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but in different parts of the flow domain. The Stokes solution for the mean flow is valid
near the wavemaker because vorticity in this region is confined to the boundary layers,
and the Longuet-Higgins conduction solution holds in the far field because the
horizontal length scale for the mean flow in this region is large and the effective
Reynolds number for the mean flow is small.

The mean horizontal flow in the region between the inviscid near field and viscous
far field varies slowly with the horizontal coordinate, but eventually evolves to
Longuet-Higgins’ conduction solution far downstream. Flows with small depth to
wavelength ratios reach the conduction solution in shorter distances than deep water
flows because of the enhanced importance of viscous forces in the shallow water case.

For a more realistic model of the flow in wave tanks than given here, it would be
necessary to include the effect of sidewalls, of a flap or wedge type wavemaker, of
surfactants, and of the air flow. We have instead concentrated on resolving the
differences between the theories of Stokes and Longuet-Higgins, with all extraneous
effects omitted.

In virtually all experiments known to the authors, the mean and mass transport
velocities are measured far from the wavemaker, and the conduction solution is
invariably observed. With regard to verification of the present theory, it would be
useful to repeat these experiments to see if Stokes-type profiles occur in the near field
and if these solutions evolve into the Longuet-Higgins conduction solution profiles, as
predicted above.

This work was sponsored under the Program in Ocean Surface Processes and
Remote Sensing at the University of Michigan, funded under the University Research
Initiative of the Office of Naval Research, Contract No. N00014-92-JI650.

Appendix A. Surface and bottom boundary layers

In treating the flow in the boundary layers we will provide only the asymptotic
structure and the key equations.

To analyse the surface layer, we employ a boundary layer theory of additive type
by letting (U,W,Q) denote the outer solution for (u

s
, u

n
, p) and by expressing the

dependent variables in the form

u
s
¯ uU, u

n
¯wW, p¯ qQ. (A 1)

Here u, w, and q depend on z¯ n}δ and vanish as z tends to ®¢, and U, W, and Q
depend on the unstretched coordinate n. The governing equations are (2.11)–(2.19).

We now let x¯ s, substitute A 1) into these equations, and expand the solution in
the form
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(n)… , (A 2)

where (u,w, q) and (U,W,Q) depend on x and T in addition to z or n. Carrying out this
procedure and noting that the outer dependent variables solve (2.13)–(2.15), we find
that
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so that the boundary conditions become
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at n¯ z¯ 0. Equation (A 5) can also be expressed in the form
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where Ω
!
is the O(1) term in the expansion of the r

#
-component of the outer vorticity

in powers of δ, and where U
!
, W

!
, and their derivatives in (A 6) and in subsequent

equations are evaluated at n¯ 0.
It is easily shown that the O(δ) continuity and normal momentum equations take the
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with boundary conditions w
#
¯ q

#
¯ 0 at z¯®¢, and therefore w

#
and q
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determined by integration over z. Substituting the values of these variables at z¯ 0
into (A 4c, f ) then provides boundary conditions on W
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A longer but still straightforward calculation yields an equation for u
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Use of the outer continuity equation evaluated at n¯ 0 shows that (A 8) can also be
expressed as
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and solution of this equation subject to (A 6) and u
"
¯ 0 at z¯®¢ determines the

O(δ) tangential component of velocity in the surface boundary layer.
It can be verified that the present theory is applicable for the parameter range

δ'O(1), ε%O(1), and that the above equations remain valid as they stand if viscous
decay of the waves is taken into account by letting the solution depend on the slow
variable X¯ δx. Hence (A 7) and (A 9) are valid for small- or finite-amplitude waves
decaying under the influence of bottom friction.

If the wave amplitude is small, as in the present problem, further results can be
obtained by expanding u

"
in the form

u
"
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In what follows we assume that ζ
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and U
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are given to lowest order by
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where c.c. denotes the complex conjugate, and that the vorticity Ω
!
vanishes to lowest

order in an expansion in powers of ε.
Solution of the equations obtained by substituting (A 10) into (A 9) is straight-

forward, and ultimately yields the results
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as zU®¢, in which
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where the angle brackets denote the time average and where c(x) and d(x) remain to
be determined. It would seem that the requirement uU 0 as zU®¢ implies that
c¯ d¯α¯ 0, as suggested by Longuet-Higgins. However, in deriving (A 12) we have
retained terms O(εδ) in the tangential momentum equation and omitted terms O(δ#),
and therefore (A 12) is valid only if δ' ε. In this case the outer equations for the mean
flow are inviscid, and are incompatible with the boundary condition on the vorticity
implied by setting α¯ 0. Consequently, the expansion (A 10) cannot be uniformly
valid, and instead we assume that a Stuart layer lies between the Stokes layer and the
outer region.

To derive the equations for the Stuart layer, we let Z¯ εz denote a stretched
normal coordinate, and again expand u

"
in powers of ε. From (A 9) we find that u

"
is

given by

u
"
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where the integral has vanishing time average and where
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Matching the outer and inner solutions thus gives
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in which the first relation provides a boundary condition for A and the second gives
the function c(x) in (A 12) after A has been determined.

The governing equation for A is obtained by averaging the O(ε#) Stuart layer version
of (A 9) over time. This lengthy calculation yields
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where Um is the outer horizontal mass transport velocity evaluated at the unperturbed
water surface, and where A satisfies (A 16) and the condition AU 0 as ZU®¢. It can
be seen that (A 17) admits the solution A3 0 if the O(ε) outer vorticity and the time
average on the right-hand side of (A 13) vanish, as in the case of unforced irrotational
standing waves (Dore 1976). In general, however, a non-trivial Stuart layer flow at the
fluid surface is required. If so, (A 7) and (A 14) imply that the expansions of w

#
and q

#
begin with terms O(ε−"), and hence the flow due to displacement thickness and the
pressure correction due to the presence of the boundary layer are both O(δ#}ε).

To treat the flow in the bottom layer we let x¯ r
"
and z¯ (r

$
d )}δ, where r

"
and

r
$

are the horizontal and vertical Cartesian coordinates, and we express the
corresponding velocity components as u and δw. Then, letting U denote the O(δ!) outer
horizontal velocity evaluated at r

$
¯®d and omitting terms O(δ#), u and w solve the

Prandtl equations
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with boundary conditions u¯w¯ 0 at z¯ 0, and uUU as zU¢.
If ε is small and if U has the form (A 11), with T replaced by t, use of a perturbation

expansion in powers of ε shows that

©uªU
3ε

2σ (2Im 0ba ¥b¥x1®
¥ rbr#

¥x *O(ε#), ©wªUO(ε), (A 20)

as zU¢. As in our treatment of the surface layer, our view is that the first relation in
(A 20) and the boundary condition uUU as zU¢ do not prescribe the value of ©Uª
at the bottom of the core region, but instead imply non-uniform validity of the
expansion in powers of ε. As before, this result indicates that a Stuart layer lies just
outside the Stokes layer.

In treating the Stuart layer equations we take Z¯ εz as the vertical coordinate.
Then, expanding u, w, and U in series of the form

u¯ u(!)εu(")… , w¯ ε−"w(−")w(!)εw(")… , (A 21)

where U has the same form of expansion as u, we find that

u(!)¯U (!), w(−")¯®Z
¥U (!)

¥x
, (A 22)

and
u(")¯U (")A(x,Z ), u(#)¯U (#)B(x,Z )uW (x,Z, t). (A 23)

Here
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where ξ solves ¥ ξ}¥t¯U (!) subject to ©ξª¯ 0, and can be regarded as the lowest-
order approximation to the horizontal particle displacement at the outer edge of the
bottom Stuart layer.

Averaging the continuity equation yields

¥
¥x

²A©U (")ª´
¥

¥Z
©w(!)ª¯ 0, (A 25)

and the equation governing A is obtained by averaging the O(ε$) horizontal momentum
equation. The equations for w(!) and A can be case in a convenient form by defining
the quantities

Um¯-U (")ξ
¥U (!)

¥x . , um¯UmA, wm¯-w(!)®Zξ
¥#U (!)

¥x#
. , (A 26)

where Um is the horizontal mass transport velocity just outside the Stuart layer and um

and wm are the lowest-order approximations to the horizontal and vertical mass
transport velocities within the layer. When expressed in terms of these variables, the
equations describing the flow in the Stuart layer become

¥um

¥x


¥wm

¥Z
¯ 0, (A 27)

um
¥um

¥x
wm

¥um

¥Z
¯

1

2

¥#um

¥Z #

Um
¥Um

¥x
, (A 28)
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with boundary conditions umUUm as ZU¢ and

©umªU
1

2σ (10 Im 0ba ¥b¥x1®3
¥ rbr#

¥x * , ©wmªU 0, (A 29)

as ZU 0.
The flow due to displacement thickness out of the bottom Stuart layer is O(δ), as

compared to the O(δ#}ε) flow due to the displacement thickness out of the surface
Stuart layer. Hence, since the present theory is based on the parameter restriction
δ' ε, the flows due to displacement thickness out of both Stuart layers can be ignored
for the purpose of computing the outer near-field flow up to and including O(ε) terms.
In the far field, the Stuart layers fill the fluid, and the appropriate boundary conditions
at the outer edges of the Stokes layers are obtained by setting α¯ 0 in (A 13) to obtain
(4.7) in the text, and by applying (A 20) to obtain (4.10).

Appendix B. Differentiation matrix at the Radau points

The Chebyshev–Gauss–Radau points are

x
k
¯®cos 92π(k®1)

2N®1 : , k¯ 1,… ,N, (B 1)

and the differentiation matrix D
ik

is defined by

¥ f

¥x )
x=xi

¯ 3
N

k="

D
ik

f(x
k
). (B 2)

This is given by

D
ik

¯
c
i

c
k

(®1)k−i
(1®x

k
)"/#

(1®x
i
)"/#

1

x
i
®x

k

, i1k, (B 3a)

D
ik

¯
1

2(1®x#
k
)
, i¯k1 1, (B 3b)

D
ik

¯®"

$
N(N®1), i¯k¯ 1, (B 3c)

where, letting δ
ik

denote the Kronecker delta,

c
k
¯ 1δ

"k
. (B 4)
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